日本政府は、「人間の幸福(well-being)」の実現を目的(Purpose)とし、同目的を実現するために、「イノベーションの創出によるSociety5.0の実現」をMissionとしている。
そうした視点から見た場合、AI戦略は、科学技術・イノベーション基本計画(5年ごとに更新)という中期計画、統合イノベーション戦略(2018年より1年更新)という年次計画の下にある部分戦略として位置付けることができる。
本問題は下記で詳しく論じている。
日本政府は、「人間の幸福(well-being)」の実現を目的(Purpose)とし、同目的を実現するために、「イノベーションの創出によるSociety5.0の実現」をMissionとしている。
そうした視点から見た場合、AI戦略は、科学技術・イノベーション基本計画(5年ごとに更新)という中期計画、統合イノベーション戦略(2018年より1年更新)という年次計画の下にある部分戦略として位置付けることができる。
本問題は下記で詳しく論じている。
2) AIの訓練(training)に使用されたデータの不適切性
「間違ったデータや偏ったデータに基づくtraining」、「不充分なデータに基づくtraining」などに起因する不適切性
3) AIのTraining法の不適切性
与えたtraining dataへの過剰適合による「過学習」問題などに起因する不適切性
経営学科は、ビジネスの基礎的な知識やスキルを学びながら、経営理論や経営戦略、マーケティング、会計、ファイナンスなどの専門的な知識を身につけることができる学科です。
グローバルビジネス学科では、国際ビジネスや国際経営に特化した知識とスキルを学ぶことができます。異文化コミュニケーションや国際マーケティング、国際金融、国際戦略など、グローバルな視点でのビジネスに必要な要素を学ぶことができます。
イノベーションマネジメント学科は、技術革新やイノベーションの推進に関連する知識とスキルを学ぶことができる学科です。イノベーション戦略、新製品開発、プロジェクトマネジメント、イノベーションのビジネスモデルなどについて学ぶことができます。
以上が明治大学経営学部の学科構成です。それぞれの学科は専攻が設けられており、より専門的な知識を深めることができます。
1. 経営学科
2. ビジネスデザイン学科
3. イノベーションデザイン学科
この3つの学科で、経営やビジネスに関する幅広い知識やスキルを学ぶことができます。
https://chat.openai.com/c/7edc0389-5d9d-4431-8045-3c286bc45ea1
このように<「明らかに間違った情報」を繰り返し回答し続けること、しかも回答の末尾が「大変失礼いたしました。正確な情報をお伝えするように努めます。」という語句で締めくくられている>ことは、OpenAI LP社の経営戦略的意図を暗に示すものとして、とても興味深い。
ChatGPTは、入試問題等の「解答」に関する性能測定に際しては、「回答候補の正当性・正確性をチェックした上で回答する」とか、「入試問題に関わる正確な大量のデータを参照させて回答するようにする」などといったファインチューニング作業をおこなうことで、下記WEBページに示されているように、高い成績を取ることができているものと思われる。
なおそうした戦略を取るOpenAIに対して、Perplexity AIは、信頼度の高い正確な回答によるdifferentiationによって持続的競争優位の確立を追求している。そうしたPerplexity AIの戦略に対して、OpenAIが今後どのような対応をするかも興味深い。この点についてはChatGPT有料版 Browse with Bingとの下記「対話」が参考になる。
下記「対話」の中では、「ChatGPT無料版は信頼度が低い回答を出すことがあるが、OpenAI LP社はそうした問題を認識し、ChatGPT有料版でさまざまな技術革新をおこなっている。」という趣旨の「弁明」を繰り返しおこなっている。
https://chat.openai.com/share/ac857337-46c9-48b1-9dcd-bd763caea56e
このNew York Timesの記事は、ネット接続できない現行のChatGPT無料版の設計では、単なるつまらない「事実」よりも、「嘘でもいいからpersuasiveな答え」を出すようなアルゴリズムが採用されている、という趣旨の記事である。しかしながら、<ネット接続ありのChatGPT有料版やMicrosoft Bing AIはそれとは違った設計になっている>ということや、<Perplexity AIは「回答の高い信頼性を確保することでdifferentiationによる持続的競争優位の獲得を目指す」という経営戦略に基づく製品設計を意図的に採用している>ということにも注意する必要がある。
さらにまた、生成AIにおける「幻覚」発生の問題は、アルゴリズム由来の側面だけでなく、Wikipediaで紹介されている下記のような学習データや言語モデルに由来する側面も重要である。すなわち「さまざな研究者が人工知能の幻覚を高次元統計または学習データの不備に由来する現象として位置付けている。」とか、「言語モデルが表層的な相関に偏向してしまい、現実の世界のありように対して頑健(ロバスト)でなくなる敵対的学習をしてしまうことがあり得る。」といった要素も「幻覚」の発生に関係している。
However, these findings have been challenged by other researchers.[10] For example, it was objected that the models can be biased towards superficial statistics, leading adversarial training to not be robust in real-world scenarios.[10]
[出典]Wikimedia Foundation(2023) “Hallucination(artificial_intelligence),” 英語版ウィキペディア
https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)
関連参考資料
例えばGoogle検索において、同義語や類義語に関する辞書データベースを利用していることは[1]や[2]の特許情報に示されている。
これに対して、生成AIシステム・プログラムは、大量のデータから学習して「大規模言語モデル」(Large Language Models、LLM)を創り出して、様々な「判断」処理をおこなっている。すなわち、異なる文章表現間の同一性・関連性・差異性を、literalなレベルだけでなく、文章表現のパターンやコンテクストなど文章表現の内的構造というレベルにおいても「判断」している。
例えば、大規模言語モデルの構成要素の一つには、「(ある特定のコンテクストにおいて)ある特定の単語の次に、どのような単語がどの程度の出現確率で登場するのか?」という単語出現確率に関するデータベースがある。また実際の生成AIシステムにおいてどこまで実装されているのかは明確ではないが、文章のパターンやコンテクストを対象として、直喩(simile)、隠喩(暗喩,metaphor)、換喩(metonymy)、提喩(synecdoche)、諷喩(allegory)などの「比喩」表現的構造という視点から同一性・関連性・差異性の「判断」処理をおこなうことも研究されている。
単語間の現象的関係の中に、直喩、隠喩、換喩、提喩、諷喩といった様々な「比喩」表現的構造が存在しているということは、「現象的構造に関する構造」(単語間の連接という現象的構造の中に、メタ的レベルにおける構造が存在し、それらの構造がいくつかに分類されるということ)の存在を示すものである。
現行のテキスト生成AIシステムは、inputデータの中に、「事実」言明と「価値」言明の区別、「事実」と「推測」の区別をメタデータとして持つような設計には基本的にはなっていない。(そうした区別構造を持つ生成AIシステムを技術的には考えられるが、現行のテキスト生成AIシステムのハードウェア能力的問題[高精度化と高速化の相反的関係も含む]や、「価値」判断に関わる倫理的問題[どのような「価値」を優先させるのかも含めて、「価値」判断に関しては多様な考え方があり、社会的に広く一致・共通している点もある程度は存在するが、それほど多くはない。]などから実装することは、誹謗中傷的言明・人種差別的言明・犯罪助長的言明など一部の例外を除き、現段階では基本的にはされてはいない。)
また学習(training)として、最初に与えられたinputデータを、外部的な「事実」データ群との一致・不一致によって「事実」データと「非-事実」データ(推測、物語、空想など)に区分する学習や、言明の信頼度を算出するような学習をさせるような製品設計にはなっていない。すなわち、「事実」言明と「価値」言明の区別、「事実」と「推測」の区別といった差異構造を事後的に内部的に持つような設計には基本的にはなっていない。
「なぜChatGPT3.5は下記WEBページのOpenAI LP(2023)「明治大学経営学部の学科構成はどのようなものですか?」などといった事実に関する問いに誤った回答をするのか?」といった趣旨の問題に関しては下記のPerplexity AIによる2023/6/8回答やChatGPT4.0による2023/6/8回答が参考になる。
ただしChatGPT4.0による2023/6/8回答に挙げられている要因だけでは、「明治大学経営学部の学科構成」に関して間違った回答をするのかを説明はできない。
「明治大学経営学部の学科構成」に関して間違った回答をする理由に関する説明の正確性・信頼度に関しても、Perplexity AIの方がChatGPT4よりも高い。
なお本問題については佐野正博(2023)もご参照ください。
下記共有リンクの内容に示されているように、OpenAIのChatGPT有料版はその場でネット検索を瞬間的にして回答を生成しているため、「内容が薄い回答」、「あまり適切ではない回答」となっています。
Perplexity AI(https://www.perplexity.ai/)有料版も、OpenAIのChatGPT有料版も、どちらも大規模言語モデル(LLM)はChatGPT4.0で同じなのですが、「事後的学習」の量と質の違いにより、前者の方が後者よりも優れた回答を返す可能性が高くなっている。
なお最近は、Googleの生成AI「Bard」https://bard.google.com/chatの性能が以前よりかなり向上している。例えば、時事的問題に関しては、OpenAIのChatGPT有料版よりも優れた回答を返すようになっている。
英語のプロンプト文 「What unique features do Apple’s third-generation Air Pods have that competing products don’t?」